

Transformada Wavelet aplicada a la Ingeniería

CRÉDITOS: 3 ECTS

PROFESOR/A COORDINADOR/A: María Elena Domínguez Jiménez (elena.dominguez@upm.es)

UNIVERSIDAD DESDE LA QUE IMPARTE EL PROFESOR/A COORDINADOR/A: UPM

¿HA DADO O VA A DAR AUTORIZACIÓN PARA GRABAR LAS CLASES DE ESTA ASIGNATURA? Si

CONTENIDOS:

- 1. Teoría de Fourier: series de Fourier y transformadas de Fourier (continua y discreta). Teorema del muestreo de Shannon. Aplicación a sistemas lineales y a filtros digitales.
- 2. Transformada wavelet. Análisis Multirresolución. Ecuación de escala. Diseño de wavelets.
- 3. Familias de wavelets utilizadas en ingeniería. Wavelets ortogonales. Wavelets de Daubechies.
- 4. Implementación de la transformada wavelet discreta mediante bancos de filtros:
 - Transformada wavelet de señales finitas (algoritmo de Mallat).
 - Tipos de extensiones.
- 5. Wavelet packets. Wavelets en dos dimensiones.
- 6. Aplicaciones: compresión de señal, extracción de ruido, detección de singularidades.

METODOLOGÍA

La exposición del contenido teórico de la asignatura se alternará con ejercicios prácticos en ordenador para aprender las aplicaciones de la Transformada de Fourier y la Transformada Wavelet. Para la parte teórica nos basaremos fundamentalmente en un material escrito por la profesora que imparte la asignatura; para la parte práctica, utilizaremos paquetes informáticos con wavelets (preferiblemente, en el curso se utilizará la Wavelet Toolbox de Matlab).

IDIOMA: castellano

BIBLIOGRAFÍA

- M. E. Domínguez, G. Sansigre: "Transformada wavelet básica para ingenieros", (2006) ISBN: 84-689-8331-4.
- C. Gasquet, P. Witomski, Fourier Analysis and Applications: Filtering, Numerical Computation, Wavelets., Springer (1998).
- G. Strang, Wavelets and Filter Banks, Wellesley-Cambridge (1996).
- M. V. Wickerhauser, Adapted Wavelet Analysis from Theory to Software, IEEE Press (1994).

COMPETENCIAS

Básicas y generales:

GG1: Poseer conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación, sabiendo traducir necesidades industriales en términos de proyectos de I+D+i en el campo de la Matemática Industrial.

CG3 Ser capaz de integrar conocimientos para enfrentarse a la formulación de juicios a partir de información que, aun siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos;

CG4: Saber comunicar las conclusiones, junto con los conocimientos y razones últimas que las sustentan, a públicos especializados y no especializados de un modo claro y sin ambigüedades

CG5: Poseer las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo, y poder emprender con éxito estudios de doctorado.

Específicas:

CE3: Determinar si un modelo de un proceso está bien planteado matemáticamente y bien formulado desde el punto de vista físico.

CE5: Ser capaz de validar e interpretar los resultados obtenidos, comparando con visualizaciones, medidas experimentales y/o requisitos funcionales del correspondiente sistema físico/de ingeniería.

De especialidad "Modelización":

CM1: Ser capaz de extraer, empleando diferentes técnicas analíticas, información tanto cualitativa como cuantitativa de los modelos.

¿SE VA A USAR ALGÚN TIPO DE PLATAFORMA VIRTUAL? No.

CRITERIOS PARA LA 1º OPORTUNIDAD DE EVALUACIÓN:

A lo largo de la asignatura, se propondrán ejercicios teóricos y prácticos que los alumnos realizará durante un plazo establecido. Transcurrido dicho plazo, lo entregarán en el formato electrónico correspondiente, y lo expondrán ante la profesora, quien podrá formularle preguntas sobre el mismo.

Se evaluará la calidad de los contenidos presentados así como la corrección a la hora de responder las preguntas. Se valorará el rigor matemático y la aplicación de los conceptos aprendidos en la asignatura.

CRITERIOS PARA LA 2º OPORTUNIDAD DE EVALUACIÓN:

A quienes no hayan superado la evaluación anterior, se les dará la oportunidad de realizar un examen final. Éste consistirá en la realización de una tarea teórico-práctica que englobe varios conceptos aprendidos a lo largo de la asignatura. La tarea se enunciará con suficientes días de antelación para que los alumnos la desarrollen y la presenten ante la profesora, quien también podrá formularles preguntas sobre la misma.

Se valorará la corrección, y especialmente la asimilación y aplicación de aquellos conceptos que el alumno en primera convocatoria no hubiera adquirido suficientemente.